Nylon: A Revolution in Textiles

nylon

[LEFT] Photograph of a nylon tulle dress "glittering with brilliants" from a 1958 Christian Dior collection, circulated by DuPont's public relations department. [RIGHT] A 35-foot-high leg display advertising nylon in Los Angeles, California. The leg was modeled by movie star Marie Wilson, shown suspended from the crane.

For the next four years attempts to create commercially viable synthetic fibers were stymied by the twin problems of low melting points and high solubility in water. In 1934 Elmer Bolton, the new chemical director at DuPont, urged Carothers to return to the problem. Carothers agreed, but this time he would focus on polyamides rather than polyesters. On 24 May 1934 a member of his research team, Donald D. Coffman, successfully pulled a fiber of a polymer based on an aminoethylester. His fiber—ultimately the first nylon—retained the remarkable elastic properties of the polyesters but lacked their drawbacks. However, since the intermediate used to form the polymer, aminononanoic ester, was tremendously difficult to produce, Carothers and his associates kept looking.

Within a year Carothers’s six researchers had narrowed the field to two possibilities: polyamide 5,10, made from pentamethylene diamine and sebacic acid; and polyamide 6,6, made from hexamethylenediamine and adipic acid. (The molecules are named for the number of carbons in the starting materials.) Carothers preferred 5,10, but Bolton pushed for 6,6 because the intermediates could be more easily prepared from benzene, a readily available starting material derived from coal tar. As Carothers’s declining mental health kept him increasingly absent from the laboratory, Bolton’s choice prevailed, and all hands turned to improving fiber 6,6.

Joseph Labovsky, a chemical engineer working as a technician in the lab, later recalled that the lab workers were scaling up fiber 6,6 “from 1 ounce to 1 pound, 2 pounds, 50 pounds, 250 pounds, and eventually to 2,000 pounds.” Paul Flory, a young physical chemist who would later win the Nobel Prize in Chemistry for his work on polymers, helped the researchers stabilize the reaction by developing a mathematical model for the kinetics of the polymerization reaction. In 1938 DuPont started construction on a nylon production facility in Seaford, Delaware, that could produce up to 12 million pounds of the synthetic fiber a year. It was time to introduce nylon to the American public.

On the Market

Nylon’s characteristics made for an ideal material to suit any number of uses, but DuPont decided early on that it would focus on a single market: ladies’ full-fashioned hosiery. As hemlines continued to rise throughout the 1930s, silk and rayon stockings had become an increasingly necessary part of every woman’s wardrobe. American women bought an average of eight pairs of stockings per year, earning Japanese silk producers over $70 million annually. DuPont never intended to produce the stockings directly; rather, the company would provide nylon thread to mills that would knit and sell the hosiery.

Before DuPont could take its new miracle fiber to the public, however, its leaders had to decide what to call it. In-house researchers had alternately been referring to what would become nylon as Rayon 66, Fiber 66, or “Duparon,” a creative acronym for “DuPont pulls a rabbit out [of] nitrogen/nature/nozzle/naphtha.” In 1938, through a decision-making process that remains somewhat obscure, the company settled on the word nylon. According to Ernest Gladding, manager of the Nylon Division in 1941, the name had originally been “Nuron,” which not only implied novelty but cleverly spelled “no run” backwards. Unfortunately, Nuron and other closely related words posed trademark conflicts, so the division proposed “Nilon.” Changing the i to a y removed any ambiguity surrounding pronunciation, and “nylon” was born. The company then decided not to trademark the name, hoping instead to encourage consumers to think of nylon as a generic preexisting material, like wood or glass.

Since 1931, when Carothers first reported on his polyester fibers at an American Chemical Society meeting, newspapers had been reporting rumors that DuPont had developed a new fiber as good as or better than silk. By early 1938 the press was producing a steady stream of articles that suggested that stockings made from the mystery fiber would outlast silk and never run. If DuPont executives had begun to grow nervous about unrealistic expectations, they grew truly alarmed in September 1938 when the Washington News ran a story based on the newly released patent (U.S. 2,130,948). The article claimed that nylon could be prepared from cadaverine, a substance formed during putrefaction in dead bodies. When combined with reports of Carothers’s suicide earlier that year, coverage of nylon took on an oddly morbid tone. Perhaps to counteract these rumors, for many years thereafter DuPont’s publicity department stressed that nylon was derived solely from coal, air, and water.