Artificial Clouds and Inflammable Air: The Science and Spectacle of the First Balloon Flights, 1783


An 18th-century hydrogen filled balloon takes off. (Library of Congress)

After this success Charles decided to go aloft again on his own. The balloon, now carrying less weight, soon rose to 9,000 feet. He later reported that “the cold was sharp and dry” at this height and the view spectacular. No human had ever experienced what he saw: the setting sun “rose for me alone, and again appeared to gild the balloon and gondola with its rays. . . . I saw all the rest of nature plunged into shadow.” Unfortunately, a sharp pain in his inner ear distracted him from “this inexpressible delight, this ecstasy of contemplation,” and he released gas from the balloon to return to earth.

Picturing Balloons

Word of the marvelous inventions spread quickly in Paris and abroad, disseminated by journals, pamphlets, books, letter-writers (including Franklin himself), and word of mouth. Prints also documented and publicized the events of early ballooning. In an age before photography, artists could only draw pictures of the ascensions. These artists may have been eyewitnesses, as they sometimes claimed in the inscriptions on their prints, but many copied images by others or reconstructed the scenes from published accounts. Printmakers etched or engraved the drawings onto copper plates, then produced dozens or even hundreds of copies for sale in Paris and beyond. For added visual appeal, colorists hand-painted the prints in watercolor. A new print could be finished just a few days after the event it chronicled, ready for display in shop windows along with dozens of other images portraying the ever-changing diversions of the metropolis.

Since the images needed to appeal to a wide audience, artists emphasized the scenes’ color, drama, and spectacle. Crowds of people often appear in the pictures, all focusing on the central event, with some obviously beside themselves with excitement. The artists tended to show key moments of the ascensions, such as the tense seconds just after takeoff or dangerous mishaps. They also, however, included much information about the construction of the balloons and their associated apparatus, both in the images themselves and in the long captions that sometimes accompanied them. Prints of hydrogen charlières taking off, for instance, nearly always depicted the barrels used to produce “inflammable air.” Even the abandoned iron-lined chest of drawers appears in a print of Charles’s first unmanned balloon flight. Artists of balloon prints may have copied such details from technical diagrams in scientific books and pamphlets (see sidebar), perhaps to add a sense of scientific accuracy to their thrilling pictures.

Did the throngs at the balloon ascensions or the people who viewed or purchased prints of the events afterward, actually learn anything about the science of gases from their experiences? Some men and women undoubtedly did, particularly if they had read scientific books or journals, or attended lectures and demonstrations given by Charles and others. The comparative sizes of the two types of balloons may have provided one clear visual lesson for the curious: the hydrogen used in the relatively small charlières was evidently much lighter than the air lifting the towering, broad montgolfières. But it seems likely that many of the attendees were unconcerned with matters of natural philosophy. Rather, they came for the sheer thrill of seeing balloons and people fly and for the intense communal experience the ascensions provided.