Chemical Relations: William and Lawrence Knox, African American Chemists

Larry spent two years teaching at Morehouse College in Atlanta before heading to Stanford University in 1930. There he worked with Carl Noller on the reducing action of Grignard reagents, obtaining a M.S. degree after one year. And then, like William, he re-entered the world of chronically underfunded black colleges and universities, which were bereft of all but the most basic chemical glassware. In 1936, after teaching at the North Carolina College for Negroes in Durham for three years, he applied to and was accepted for doctoral work at Harvard. His first two years were supported by a fellowship from the General Education Board, which assisted African Americans seeking higher degrees.

Larry elected to work for Paul Bartlett, the U.S. leader in the new field of physical organic chemistry. Despite a prolonged illness during his first year, he earned his doctorate in 1940. Bartlett praised Larry’s perseverance and laboratory skills, calling him “one of the most productive” of his 15 lab workers. The resulting Bartlett/Knox paper was quickly recognized as a classic in physical organic chemistry and is still cited in current textbooks. Larry studied the mechanism of nucleophilic substitution in aliphatic compounds, a ubiquitous chemical and biochemical process. He had synthesized a compound that was incapable of reacting by either of the two then recently proposed reaction pathways. It proved inert even under strenuous conditions, lending strong support to the hypothesis that those were the only two pathways for nucleophilic substitution under ordinary conditions.

Despite producing what Bartlett described as the “neatest and prettiest job of any research student,” Larry’s skin color continued to trump his chemistry. With no other options Larry, Ph.D. in hand, returned to teaching at North Carolina College for Negroes.

Opportunities of War

With America’s entry into World War II the growing need for trained personnel offered opportunities for many groups largely excluded from the chemical industry—women, Jews, and African Americans. Anxious to join the war effort, William contacted Willard Libby at Columbia, who was using corrosive uranium hexafluoride gas (UF6) to separate uranium isotopes for an atomic bomb.

William joined the unit in 1943 and spent two-and-a-half years working on corrosion problems. When the Corrosion Section’s leader left, Libby appointed William head of the all-white section. William later said that the war provided his first taste of true membership in an active scientific community. Arthur Holly Compton, Nobel laureate and leader of the Manhattan Project’s Metallurgical Laboratory, proclaimed that the atomic-bomb project had shown how “colored and white, Christian and Jew” could work together toward a common end. William had finally broken free of the preordained path for black chemists.

Larry’s chance came in 1944. Early that year Robert Woodward and William Doering published on the total synthesis of quinine, an antimalarial agent. Seeking to contribute to the war effort, Larry wrote to Doering, who was directing a quinine-related project for the Division of War Research. Doering, who knew of Larry’s work with Bartlett, hired him to work on the project.