Chemical Relations: William and Lawrence Knox, African American Chemists

For Larry the move to Katonah was ideal, but not for his family. The area’s mostly poor and uneducated black residents lived in a marginal district called Greenville. Since white residents vehemently opposed the Knoxes living in the better part of town, the Weils built a home for the family on their estate—an isolating experience for Larry’s wife, Hazel, and their son.

At work Larry oversaw research projects and also worked at the bench. Doering described Larry as “the finest experimental coworker I ever had.” Larry could also inspire others, such as Maitland Jones, Jr., a local teenager who worked summers at Hickrill and who became a professor of chemistry at Princeton University. Larry also influenced Caleb Finch, another summer worker, who went on to a professorship in neurobiology at the University of Southern California. Finch remembers Larry’s patience and kindness toward him as he learned the most basic of lab techniques. Finch was equally impressed by his “equanimity and composure during these excruciatingly difficult social and political circumstances.”

These circumstances included social isolation. Larry and Hazel joined St. Luke’s Episcopal Church in Katonah but were never invited into well-to-do members’ homes. Soon after their arrival they planned a party and sent out personal invitations—but no one came. In another instance Doering and Knox drove to an American Chemical Society meeting in Chicago (about 900 miles each way) and slept in the car because no motel would accept Larry as a guest, even in the North.

Since the Hickrill Laboratory was not constrained by the need for practicality or profit, the researchers could pursue fundamental issues. One question that had baffled chemists since the 19th century was why benzene (C6H6) and related ring compounds (so-called “aromatic” substances) were unusually stable and unreactive (a fact that did have many practical consequences).

In 1933 German theoretician Walter Hückel proposed a general theory based on the number of electrons in the ring compounds. Doering and Knox decided to test the theory experimentally by preparing C7H7+ (called the tropylium ion). Conventional thinking held that charged organic compounds, like the tropylium ion, would be reactive and difficult to isolate; Hückel’s theory predicted the opposite. Doering and Knox provided experimental support for Hückel’s theory, which explained a focal point of organic chemistry. Their work also pushed reluctant organic chemists toward greater reliance on theory.

In the late 1950s the foundation closed, and the estate was sold by the Weil children. Larry’s marriage also fell apart. After his divorce he married Anne Juren, the foundation’s white secretary, and took a position with Laboratorios Syntex S.A. in Mexico City. Part of the motivation for the move was his belief that a mixed marriage would fare better in Mexico than in the United States.

Although a small pharmaceutical company, Syntex had made a splash in the 1940s with the isolation of a sapogenin that could be readily transformed into progesterone. This discovery dropped the price of progesterone precipitously and led to the development of one of the first birth-control drugs. The 1950s and early 1960s were the “Golden Age” of steroid chemistry, and Syntex was a major player in the race to publish and patent new reactions, processes, and compounds.

Larry fit in well at Syntex, despite having no previous experience with steroids. He did have, however, a great deal of experience at the cutting edge of chemistry, a history of working harmoniously with colleagues, and exceptional laboratory skills. From 1960 to 1965 Larry coauthored 10 papers and was awarded over 40 patents related to steroid chemistry. At least two of the investigations harkened back to work done at Hickrill: steroids containing 7-membered rings and reactions of unsaturated steroids with halocarbenes.