Behind the Barbed Wired of Manzanar: Guayule and the Search for Natural Rubber 

Hugh Anderson (pictured) joined his colleague Robert A. Emerson in setting up Manzanar’s research labs. Image courtesy Michael Fraley.

The project operated on a minuscule budget—so tiny that many of the research costs were paid out of Emerson’s own pocket. He also gathered the equipment, laboratory supplies, and botanical materials needed to get the project off the ground. Emerson and a Pasadena colleague, Hugh Anderson, returned from the ERP’s base in Salinas with 14 gunnysacks full of discarded guayule cuttings that, once propagated, were enough to get hundreds of thousands of plants started. Emerson filled researcher requests for brass pipe, scientific books and articles, hoes, saws and other tools, acetone, benzene and other solvents, slide rules, spring balances, overalls, and even fresh fruit and breakfast cereal for the internees’ families. Because glassware was scarce, camp residents ate peanut butter and jam as quickly as possible to free up extra glass jars for research.

Most experiments had begun by June 1942, in converted ironing rooms, medical clinics, and homemade greenhouses. But scientific research behind the barbed wire of the high California desert faced many difficulties. High winds destroyed one of the hastily constructed lath houses; rats, ants, and insects attacked the nurseries; and jackrabbits feasted on the young plants. (Emerson brought in greyhounds from a Los Angeles racetrack to hunt them down.) Researchers often lacked access to electricity, water, manpower, and other necessary resources, while the daily work of propagating, transplanting, and tending tens of thousands of young guayule plants proved exhausting, especially in the extreme climate of the high deserts and behind the barracks’ flimsy tar-paper walls.

Despite these problems, a few outsiders realized that this small group of Japanese American scientists was newsworthy. Within weeks of the internees’ arrival Science News Letter published a brief article that touted the skillful, innovative, and patriotic work of the men “camped in California’s dry interior.” In June 1942, with the young guayule plants already in bloom with small yellow flowers, photographer Dorothea Lange arrived to document the Manzanar experience. In one especially evocative photograph she captured a Japanese American worker tending the guayule cuttings under a latticed shed. The resultant image, depicting streaks of light and shadow across the evacuee’s body, gives the impression of a man in a prison uniform. (Lange’s photographs did not capture the positive image required by government officials; most of the photos were impounded in government files for decades.) Then, on September 6, 1942, the Washington Post published a lengthy article that extensively praised the Japa­nese American scientists’ “unbelievable patience” and “exceptional skill,” and their desire to prove their loyalty to the United States. The article concluded that “never before have such formidable forces joined in a concentrated attack similar to the experiment at Manzanar.”

While welcome to the internees and their supporters, this news threatened to overshadow the official project at Salinas. One of Salinas’s leading citizens complained to FBI Director J. Edgar Hoover about the positive publicity, which he believed  might provide justification for returning Japanese Americans to their homes on the West Coast—a move  he vigorously opposed. By the fall of 1942 several government bureaucrats believed it was time to rein in Emerson and shut down the Manzanar project. At about that time Manzanar officials cut off researchers’ access to irrigation water. Unbeknownst to the guards, two internees kept their plants alive for several weeks by secretly watering them at night.

Yet the few dozen Japanese American scientists, working on shoestring budgets in makeshift laboratories and on tiny research plots, had scored scientific successes in three important areas. First, by using homemade and commercial plant-rooting hormones and heating seedbeds, they managed to grow guayule from cuttings, a task that had eluded other guayule researchers for decades. They also found that a moist leaf mold, found under a nearby oak tree, provided a satisfactory medium for the young plants.

Second, the interned scientists developed new methods of cross-pollinating the tiny flowers, creating hybrids suited to the unirrigated and marginal environment of California’s high desert. This success opened up possibilities for a long-lasting post-crisis guayule program in the arid Southwest. Third, with their base in a converted hospital room, internees like Masuo Kodani uncovered some of the mysteries of guayule breeding and made lasting contributions to the field of plant genetics.