Celluloid: The Eternal Substitute

Celluloid's past: billiard balls, jewelry, cigarette case, greeting cards, toys, and Ping Pong balls (which are still being manufactured today). Photograph by Gregory Tobias.

Celluloid, developed in the late 19th century, launched the modern age of man-made plastics. At first celluloid was an eternal substitute—an inexpensive imitation of ivory, tortoiseshell, and even linen. Women adorned themselves with celluloid jewelry and hair combs. Some had lavish celluloid “toilet sets” on their vanity tables: hand mirrors, combs, hairbrushes, nail buffers, and other grooming items manufactured in classic ivory tones or, later, in gleaming pearl-escent hues set with rhinestones. Men and women alike wore detachable collars, cuffs, and shirtfronts stiffened with celluloid. People from all walks of life used toothbrushes with celluloid handles; children played with celluloid dolls and toys. Gamblers threw celluloid dice and dealt celluloid cards.

In short, celluloid had become an everyday material, just like the hundreds of plastics that would follow after World War II. But it remained an inessential replacement, and its makers sometimes struggled to find appropriate uses and markets for their products. And celluloid’s flaws, particularly its flammable nature, sometimes outweighed its virtues of cheapness and versatility. The material only found its true identity when it liter-ally became the medium for another great modern invention: the motion picture.

Cotton and Camphor

Plastic, from the Greek word for molded, means just that: something that is capable of being molded or shaped. There have always been plastic materials in nature, including amber, rubber, and gutta-percha, all derived from tree sap. Even glass, moldable at high temperatures, is a natural plastic. The industrial age of the 19th century, with its faith in progress, turned to chemistry to invent a dazzling array of substances, including new plastics. Explosive fiber might seem an unlikely base for a moldable material, but the development of cellulose nitrate, also called nitrocellulose, was the first step toward celluloid.

Cellulose, composed of a chain of sugar molecules, is the building block of the cell walls of green plants. Thanks to cellulose, the most prevalent organic compound on Earth, wood is strong, paper is flexible, and cotton (which is 90% cellulose) can become fabric. While testing acids on organic materials in 1846, Swiss chemistry professor Christian Friedrich Schönbein found that a mixture of sulfuric and nitric acids drastically affected the cellulose in cotton. The white, fluffy fibers still looked the same, but they burned swiftly and fiercely.

This “guncotton” could be dissolved with organic solvents, and the resulting thick, syrupy liquid, called collodion, dried to a flexible film or a hard sheet, depending on the proportion of solvent. Collodion, first used in the late 1840s as a liquid bandage to protect skin, soon became important for photography. Turning this substance into a solid mass, however, required more experiments and ingredients. Camphor, another plant-based material, provided the key.

Camphor, familiar as a medicine and a moth repellent, is a crystalline compound usually derived from the wood and bark of the camphor laurel, a tree native to Asia. When combined with pyroxylin (partly nitrated cellulose) and other ingredients, camphor both dissolves the guncotton and makes it literally plastic, or moldable. Two new pyroxylin-based plastics—parkesine and xylonite—made short-lived appearances in the 1860s before falling into obscurity. Other similar materials followed, also with little success.

Mashing and Mixing

But man-made plastic soon found a future. In 1863 printer John Wesley Hyatt, a blacksmith’s son from upstate New York, noticed an intriguing advertisement. A New York City firm offered the then immense sum of $10,000 for an ivory substitute. The firm’s problem: billiards, formerly an upper-class amusement, was turning into a mass-market entertainment. The hard, uniform ivory of the highest quality essential to make balls came from the African ivory trade, which slaughtered elephants and forced enslaved men to carry the tusks on foot for hundreds of miles. Despite the barbarity of the trade, American firms worried more about potential shortages and the high manufacturing costs of turning raw ivory into billiard balls.

Hyatt jumped into the fray, experimenting with shellac (the resin from the female lac bug, which lives in forests in Thailand and India) and pressed wood pulp. This mixture, already used to make molded cases for daguerreotype photographs, was at first more suitable for smaller items like dominoes and checkers. Hyatt, ever resourceful, set up a company to make such game pieces, before beginning experiments with pyroxylin and camphor. He found it was not enough just to mix the two materials. In a process he patented in 1870, the two were pulverized separately—with dyes or pigments added to the pyroxylin pulp—then combined into a single mass, which was drained under pressure to remove excess water and molded under high heat.