Celluloid: The Eternal Substitute

Detail of celluloid vanity set, 1920s. Because celluloid was clear and colorless, it could take on any kind of color—even mottling.

Eastman, however, was always trying to do better. While developing the Kodak, he had hired young chemist Henry Reichenbach to come up with a film that would be strong, flexible, and wholly transparent, requiring no stripping. It was already possible to create relatively thin layers of celluloid (as for collars and cuffs), but a photographic film would require an extremely thin, wholly uniform layer. Reichenbach used the well-known solvent amyl acetate to dilute celluloid for this purpose, and he soon determined the exact proportions of chemicals and the machinery needed to produce the film in bulk. He and Eastman filed patents for their inventions in 1889 and incorporated the film into the Kodak system. Despite a long-running patent dispute with a rival inventor (finally settled in 1913 with a $5 million payment from Eastman), celluloid-based film was a great success, reaping huge profits for the company.

The film was an immense boon to still photography, since amateurs could now develop and print it themselves rather than sending their Kodaks back to Rochester for processing and refilling. But nitrocellulose film (often simply called “nitrate film”) was an even greater gift to an emerging art form, since it made motion pictures possible. Early cinema experimenters had first tried using strips cut from celluloid blocks, but Reichenbach and Eastman’s film was obviously superior. When combined with money, talent, imagination, and ceaseless improvements to cameras and projectors, nitrate film—“trillions of miles” of it by 1928, according to one writer—created a new industry and transformed popular entertainment. Such classic movies as Fritz Lang’s Metropolis (1927), Charlie Chaplin’s Modern Times (1936), and Orson Welles’s Citizen Kane (1941) were all shot on nitrate film. And the “cels” of animation, the transparent, hand-painted sheets that brought Mickey Mouse and Bugs Bunny to life when filmed in sequence, were also made of nitrocellulose.

The material’s extreme flammability seemed a small price to pay for such bounty. Since movie projectors’ powerful electric lamps tended to overheat the fast-moving film, projection booths had to be lined with asbestos and equi­pped with safety shutters to prevent fires from consuming entire theaters. Early “safety films” made of cellulose acetate compounds had higher burning points but were more expensive and less durable than nitrate film. In 1950, just two years after Kodak introduced a greatly improved safety film made of cellulose triacetate, the company stopped making nitrocellulose film. The cinematic reign of celluloid, more than 50 years long, was finally over. Unfortunately, because of nitrate film’s instability, many early movies, particularly silent films from the dawn of cinema, have been lost forever, decomposed in their cans or burned in studio fires.

Celluloid Today

Although we still talk about the “celluloid heroes” of cinema and call motion pictures “films,” celluloid as a material is largely a thing of the past. Collectors snap up vintage celluloid toys, jewelry, and vanity sets on Internet auction sites, attracted by the charming design and craftsmanship shown in even the most humble, everyday items.

Surprisingly, though, this pioneering plastic continues to reign supreme in one arena. If you’ve ever bounced a Ping-Pong ball and smacked it across a table with a wooden paddle, you can appreciate celluloid’s lightness and toughness. Ping-Pong (or table tennis) began as an English parlor game in the 1880s, but really took off when celluloid balls replaced rubber or cork ones in 1900. Hollow celluloid balls, with their perfect bounce, have remained the standard for the game, even in international competitive play. As with Eastman’s photographic film, celluloid is most successful when valued for its own special qualities instead of standing in for another material. On the ping-pong table this remarkable synthetic plastic is no longer an imitation or a substitute; it is unquestionably the real thing.

Art historian Jane E. Boyd, Ph.D., studies the history and visual culture of techno­logy, science, and medicine. She works as an independent curator and freelance writer and editor in the Philadelphia area.