Joseph John Thomson

In the video below, Mike Grayson of the American Society for Mass Spectrometry describes the early accomplishments of Joseph John (J. J.) Thomson.

J. J. Thomson. CHF Collections.

 

In 1897 the British physicist Joseph John (J. J.) Thomson (1856–1940) discovered the electron in a series of experiments designed to study the nature of electric discharge in a high-vacuum cathode-ray tube, an area being investigated by numerous scientists at the time. Thomson interpreted the deflection of the rays by electrically charged plates and magnets as evidence of &quotbodies much smaller than atoms&quot that he calculated as having a very large value for the charge-to-mass ratio. Later he estimated the value of the charge itself.

In 1904 Thomson suggested a model of the atom as a sphere of positive matter in which electrons are positioned by electrostatic forces. His efforts to estimate the number of electrons in an atom from measurements of the scattering of light, X, beta, and gamma rays initiated the research trajectory along which his student Ernest Rutherford moved. Thomson's last important experimental program focused on determining the nature of positively charged particles. Here his techniques led to the development of the mass spectrograph. His assistant, Francis Aston, developed Thomson's instrument further and with the improved version was able to discover isotopes—atoms of the same element with different atomic weights—in a large number of nonradioactive elements. 

J. J. Thomson (left) and Ernest Rutherford in the 1930s. From The Growth of Physical Science, by Sir James Hopwood Jeans. Cambridge: Cambridge University Press, 1948.

J. J. Thomson (left) and Ernest Rutherford in the 1930s. From The Growth of Physical Science, by Sir James Hopwood Jeans (Cambridge: Cambridge University Press, 1948).

Ironically, Thomson—great scientist and physics mentor—became a physicist by default. His father intended him to be an engineer, which in those days required an apprenticeship, but his family could not raise the necessary fee. Instead young Thomson attended Owens College, Manchester, which had an excellent science faculty. He was then recommended to Trinity College, Cambridge, where he became a mathematical physicist. In 1884 he was named to the prestigious Cavendish Professorship of Experimental Physics at Cambridge, although he had personally done very little experimental work. Even though he was clumsy with his hands, he had a genius for designing apparatus and diagnosing its problems. He was a good lecturer, encouraged his students, and devoted considerable attention to the wider problems of science teaching at university and secondary levels.

Of all the physicists associated with determining the structure of the atom, Thomson remained most closely aligned to the chemical community. His nonmathematical atomic theory—unlike early quantum theory—could also be used to account for chemical bonding and molecular structure (see Gilbert Newton Lewis and Irving Langmuir). In 1913 Thomson published an influential monograph urging chemists to use the mass spectrograph in their analyses.

Thomson received various honors, including the Nobel Prize in physics in 1906 and a knighthood in 1908. He also had the great pleasure of seeing several of his close associates receive their own Nobel prizes, including Rutherford (chemistry, 1908) and Aston (chemistry, 1922).

Related Links

 

Distillations Podcast

Thanks to J. J. Thomson's plum pudding model of the atom, chemistry will be forever associated with 19th-century British Christmas traditions.

Chemical Heritage Magazine

Meet J. J. Thomson, the man who disproved Einstein’s dictum that the man “who has not made his great contribution to science before the age of thirty will never do so.”

Hear It Firsthand

The Center for Oral History captures and preserves the stories of notable figures in chemistry and related fields, with over 425 oral histories that deal with various aspects of science, of scientists, and of scientific practices. For more information please visit CHF’s Oral History Program or e-mail oralhistory@
chemheritage.org
.

Arnold O. Beckman

CHF’s Beckman Center for the History of Chemistry was started with a generous grant from the Arnold and Mabel Beckman Foundation in 1987.

 

Connect with CHF

Distillations

Listen to the latest episodes of CHF’s award-winning science podcast.

 

Meet the Othmers